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J .  P H Y S .  A ( P R O C .  P H Y S .  SOC.) ,  1968 ,  S E R .  2 ,  V O L .  1. P R I N T E D  I N  G R E A T  B R I T A I N  

The Yang-Lee distribution of zeros for a classical 
one-dimensional fluid 

0. PENROSE and J. S. N. ELVEYf 
Mathematics Department, Imperial College, London 
MS. received 15th July 1968 

Abstract. The interaction potential is assumed to satisfy ~ ( r )  = + CO if Y < U and 
~ ( r )  = 0 if r > 2 a ,  where a is a constant greater than zero, so that only nearest 
neighbours can interact. At any fixed temperature T let kTn(z) be the thermodynamic 
pressure at fugacity z 2 0, as calculated from the equation of state. Let n(z) be the 
complete analytic function obtained by analytic continuation of n(z )  into the complex 
z plane, and G be the set of values of z for which one branch of n ( z ) ,  say n,,,(z), 
is regular and has a larger real part than all the others. It is proved that, in the limit 
where the length L of the system tends to infinity, the zeros of the grand partition 
function 9(z, L)  approach a point set Z which consists of analytic arcs and is the 
complement of G. I t  is also proved that G is simply connected, that 

lim In E(z, L)I = Re IIm&z) 

for all z in G, and that the limiting line density of zeros of 5 along any arc of Z (each 
zero being given the weight L - l )  is (2n) times the discontinuity in Imrm.&) across 
the arc. As an illustration, (a result of Hemmer e t  d, ) ,  that Z is - CO < z < -l /eu 
for the hard-rod system is confirmed rigorously. 

LJ m 

1. Introduction 
Yang and Lee (1952) have shown how the possible occurrence of phase transitions in a 

classical system of particles can be related to the behaviour of the zeros of the grand partition 
function 9 in the complex plane of the fugacity variable z ,  in the limit where the size of 
the system becomes infinite. In  this paper we shall consider one-dimensional continuum 
systems only, and we shall denote the grand partition function for such a system at fugacity 
x on a line of length L by E(x, L). The temperature ( k P ) - l  is treated as a (positive) constant 
and is therefore not shown explicitly. il point zo in the complex x plane will be called a 
limit point of xeYos of 5 when the following conditioii is satisfied : for every neighbourhood N 
of zo and every number K ,  there exists a number L > Kand  a x in N such that E(x, L )  = 0. 
An equivalent statement is this: zo is not a limit point of zeros of E if and only if there 
exists some neighbourhood of xo that is free of zeros of 9(z, L) for all sufficiently large L. 
We shall denote the set of limit points of zeros of E by Z. The Yang-Lee theory shows 
that a phase transition can occur only at those values of x where Z meets the real positive 
x axis. 

Up to now the set Z has been calculzted directly only for lattice systems (Lee and Yang 
1952, Hemmer et al. 1966, Nilsen and Hemmer 1967); Hemmer et al. also treat the con- 
tinuum hard-rod system by malting the lattice spacing tend to zero. In  all these cases 
Z has been found to comprise a connected set of arcs in the x plane. It is the purpose of 
this paper to show rigorously that Z also consists of arcs in the case of one-dimensional 
continuum systems with hard cores and nearest-neighbour interactions, and to give an 
unambiguous prescription for determining these arcs from the functional relation giving 
the reduced pressure T = p1kT as a function of fugacity x when x > 0. This functional 
relation may be obtained either from the equation of state or from the formula 

~ ( x )  = lim L-l  In E(2, L)  if x > 0. (1) 
L 7” 
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Our prescription uses the complete analytic function II(x) obtained by analytic continuation 
of n(x)  into the complex 2: plane. Whenever one branch of II(z) is regular and has a larger 
real part than all the others, we call this branch IImax(x). We shall show that 2 comprises 
all the points where IImax(z) does not exist, either because II(x) has a singularity (branch 
point) or because the branch of II having largest real part is not unique. 

Our prescription is closely related to the one used by Hemmer and his collaborators 
(Hiis Hauge and Hemmer 1963, Hemmer and Hiis Hauge 1964, Hemmer et al. 1966) 
to find 2 for the one-dimensional gas of hard rods with or without a weak long-range 
interaction. The  principle of their method (Byckling 1965) is to find a system of cuts in 
the complex 2: plane such that the real part of the analytic continuation of ~ ( x )  into the 
cut plane is continuous across the cuts. A difficulty with their method is that there may 
be more than one system of cuts satisfying this condition. Our method differs from theirs 
in two ways: first, we prove (instead of assuming it) that ~ ( x )  may be obtained by analytic 
continuation when x is complex, and that 2 is a set of arcs; and secondly, the set of arcs 
we obtain is manifestly unique. 

Our main results can be summarized in three theorems: 

Theorem I 
If z E G, where G is the set of values for which IImax(x) exists, then 

lim L-l In1 E(x, L)I = Re IImax(x); 
L +m 

(a) 

Theorem I1 
(a) The complement of G is composed of analytic arcs and 
( b )  G is simply connected. 

Theorem I11 
(a) 2 coincides with the complement of G, and 
(b)  if NAB(L) is the number of zeros of 3 ( x ,  L )  in a region whose intersection with 2 is 

the arc AB, then 
l i m p  fikB(L) - - - 1 / B B ( A 4 &  ___ 

L-03 L 277 * as 

where AV is the discontinuity in Im IImax(z) across the arc AB and s is a parameter measur- 
ing distance along the arc. 

A preliminary announcement of these results has already appeared (Elvey and Penrose 
1968). Theorem I(a) was given there in the apparently stronger form 

lim L-l In 9(x, L) = II,,, 
but there is no essential difference since the imaginary part of a logarithm can be defined 
uniquely only by an arbitrary convention. 

2. The Laplace transform of the grand partition function 
We consider a classical one-dimensional system of particles free to move on a line of 

length L. It is assumed that there are two-body forces only, with interaction potential 
q(r) satisfying 

y ( ~ )  = + cc 
y (P)  = 0 

if P < a 

if r > 2a 
(2) 

so that only nearest neighbours can interact. For a < Y < 2a the function q(r) is assumed 
to be real and of bounded variation. 
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The  configurational integral for an n-particle system is 
1 PL P L  

Qn(L) = <J ... J dx, ... dx,exp{ -PU,(x,, ..., x,)} 
n .  0 0 

(3) 

where U,(x,, ..., x,) denotes the total potential energy of n particles at xl, ..., x,. By virtue 
of (2) one can simplify (3) by using the symmetry of U,(%,, ..., x,) in xl, ..., x,, and specify- 
ing once and for all a particular ordering of the particles. One then obtains (for n 2 1) 

L L L n-1 

Qn(L) = 1 dx1 1 dx, a * *  1 dx, -l-T exp{ -P’P(Xt+1-.t)>. (4) 
0 X I  t = 1  

This  integral has the upper bound 

Qn(L) < (Ln/n!) exp((iz -1)PQ) ( 5 )  

where Q -inf (P(Y) .  The  grand partition function is defined by 

for all values, real or complex, of the fugacity x. According to (5) the series in (6) is 
absolutely convergent, and E has the upper bound 

131 < exp(,xiLe”). (7) 
It was shown by Takahasi (1942, see also Gursey 1950) that the Laplace transform of 

the configurational integral for the system considered here can be evaluated in a simple 
way. Here we shall take advantage of the further simplification that can be obtained (see 
Longuet-Higgins 1958) by using instead the Laplace transform of the grand partition 
function, which is defined by 

W 

Y ( z , p )  = 1 dL e-pLE(x, L) (8) 
0 

provided that R e p  exceeds the abscissa of convergence of the integral, defined by 

A ( x )  E Iim sup L-I In] E(x, L)j. (9) 
L + x  

From the estimate (7) we see that 
A(z) 6 1x1 eom. 

Since x is treated as a fixed parameter in this section, we shall abbreviate T(x, p )  to Y(p). 
T o  calculate Y(p) explicitly we substitute (6) into (S), obtaining 

By ( 5 ) ,  the series converges if R e p  > / X I  exp(P@), and the interchange of limits is justified 
by Lebesgue’s theorem (Riesz and Nagy 1955, 19). Using (4) we find, on changing to 
L -x  ,, x, - x,- ..., x2 - xl, x1 as variables of integration, that 

where 
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Unlike Y(p) ,  the function +(p) does not depend on the parameter x. Substituting (12) into 
(11) we obtain 

for a l l p  satisfying R e p  > 1x1 eo'. 

(13) in the form 

Y ( p )  = p-l+zp-2{1 -.+(p)}-l (14) 

T o  extend the definitions of+@) andl'(p) into the rest of t h e p  plane, we use (2) to write 

2a 

(15) +(p) = / dre-8?(r)-Pr + p - 1  e - 2 a ~ .  

T h e  integral is an entire analytic function of p ; to prove this, we show that its first derivative 

a 

where h ih/ eie, exists for all p and is independent of B. This is done by subtracting 

2a -J r dr  exp( - P y ( r )  -pr} 

the formal derivative of the integral in (15), from the expression whose limit is taken in (16), 
and noting that the absolute value of the resulting expression is at most 

U 

6 e4@-WRePl lim dyBr2ihj erlhl = 0 .  +l)i 1:" lim/;a dv I , -&( r ) -p r  (e- '%-l  ____ 

T h u s  the formula (15) provides the analytic continuation of the definition (13), which 
converges only for sufficiently large R e p ,  into the whole p plane, and shows that +(p)  is a 
meromorphic function with just one simple pole at p = 0. Using the algebraic relation (14) 
we can now easily continue Y ( p )  analytically into the whole p plane; it too is a meromorphic 
function. 

3. The poles of the Laplace transform 
T o  calculate n(x) ,  which depends on the behaviour of 9(z, L) for large L,  we shall 

apply the calculus of residues to the inversion integral for the Laplace transformation (8). 
This  application depends on the positions of the poles of the function l"(p).  According to 
(14) these poles are the points pl, p,, ... that satisfy the condition 

+(pi) = l/x if x # 0 

P, = 0 i f z = O  

(there is no pole at p = 0 if z # 0 since, by (15), $ = p- l+O( l )  for small p ,  so that (14) 
gives Y(p)  = (1+O(x)}/{p-z+O(pz)}) .  T h e  pole given by (17) is simple (Copson 1935, 
$6.22) if +'(pi) # 0, where +' z diL/dp. 

T h e  function Y(p) must have at least one pole, for if not the functionp{+(p) - l/z) would, 
by (15) and (17), be an entire function o f p  of order unity with no zeros and by Hadamard's 
factorization theorem (Copson 1935, $7.6) would therefore have the form C exp(zp), giving 
# p )  = l / x+  C exp(orp)/p which is inconsistent with the consequence of (15) that 
lim,+&p) = 0. (We are indebted to Professor W. Hayman for this argument.) 

Only a finite number of the poles of Y(p)  lie to the right of any line R e p  = constant = A,,, 
say. This is trivial if A, > A(x ) ,  since no poles at all lie in the region where the integral (8) 
converges. If A, < A ( x )  then all the poles in question lie in the strip A, < R e p  < A(x) .  
We show that no poles can lie very far from the realp axis: integrating by parts in (15) we 
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obtain 
e - Z a p  - 4y(r) - P r  2a  2a  e - &(r)  - P r  

14P) - pi = 1 [+I r = a  - 1 P 
e4Q+ 2aIRepl 

6 (2+8s:y lddr) l )  * (18) 

Since 9 is of bounded variation, it follows that # ( p )  + 0, as Im p -+ & CO uniformly in the 
strip A, < R e p  6 A(z) ,  so that (by (17)) all the poles within this strip lie within a finite 
rectangle. Since T(p) is meromorphic, it can have only a finite number of poles in such a 
rectangle, which completes the proof. 

A corollary of this result is that there must be a finite set of poles whose real parts are 
equal and exceed the real parts of all the other poles; we call the poles in this finite set 
the poles of largest realpart .  In  general there is just one pole of largest real part, and that 
pole is simple; the set of all values of 2; for which this occurs will be denoted by G. (In 9 1, 
a different definition of G was used, but lemma I will show that the two are equivalent.) 
The  set of ‘special’ values of x for which this does not occur will be denoted by S. 

We show next that every real non-negative value of 2: belongs to G. Equation (15) 
shows that, as p moves along the real axis from 0 to + CO, the value of # ( p )  decreases 
monotonically from + cc to 0. Consequently, if x > 0, there is just one real positive 
solution, say p,, to the equation (17) for poles of Y(p). Let p be any point with R e p  2 p , ;  
then by (15) we have, firstly, 

l#(P)I #(Rep) 

#(Rep) #(PI) 

with equality only if I m p  = 0, and secondly 

with equality only if R e p  = Rep,. Combining these two inequalities, we see that 
I#(p)l < #(p,) unless p = p, ,  from which it follows, by (17), that if p # p, it cannot be a 
pole of Y(p), so that p ,  is indeed the pole of largest real part. 

Although we have so far treated x as a fixed parameter, it is important to know how the 
positions of the poles p,, p,, ... depend on x. The following lemmas give useful information 
about this dependence. The first of them also serves to show that the definition of G used 
here is equivalent to the one used in 5 1. 
Lemma I 

There exists a complete analytic function II(z) such that, for any complex 2, the complex 
numbers p,, p,, ... are the values of the various branches of IT(x). The pole pi is simple 
if, and only if, IT(x) has no branch point when n(x) = pi. 
Proof. Equation (15) shows that#(p) has a simple pole at p = 0; therefore l/#(p) has a simple 
zero at p = 0 and is analytic in a neighbourhood of p = 0. The  relation x = l/#(p) can 
therefore be uniquely inverted near p = 0, to give p as a function of x. In  conformity with 
the notation used in (17), we call this function p , ( x ) ,  so that 

#(A(.)) = I/. (19) 

near x = 0. Now let n ( z )  be the complete analytic function (Ahlfors 1966, p. 276) obtained 
by analytic continuation from the function element p,(z) ; we shall show later that this 
definition of H(z) is equivalent to the one used in 4 1. By the permanence of functional 
relations (Ahlfors 1966, p. 277) applied to (19), every branch of II(x) satisfies 

# ( I I ( x ) )  = l / z .  (20) 

Consequently, by (17), every possible value of IT(z) for a given value of x is a pole of Y ( p )  
for that value of z. Moreover, if pi is such a possible value and II(x) has no branch point 
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with II(x) = pi, then the relation (20) is uniquely soluble for II(x) close to pi; this implies 
that $’(pi) # 0 and hence, as shown in connection with (17), that the pole at pi is simple. 
Conversely, if pi is any simple pole of T(p), then we may join the point p ,  to the origin of 
the p plane by a continuous path that avoids the isolated points where either $(p)  or d$/dp 
vanishes; under the mapping +(p) = l /x  this path has a unique continuous image in the 
x plane, and by continuing the function p l ( x )  analytically outwards along this path we 
obtain a branch of rI(x) taking the value pi for the given value of x. This completes the 
proof of lemma I. 

Lemma I1 
Two branches of II(x) cannot have equal real parts throughout a region in the z plane. 

Proof. Suppose, on the contrary, that two branches IT,, r12 of II(x) satisfied the condition 
Re II,(z) = Re I12(x) for all x in a region. Then the Cauchy-Riemann conditions would 
imply that the function 111--112 had a constant imaginary value, say iw, for all x in this 
region. Since each of HI, II, satisfies (20), we should have 

+(ITl (X))  = $(w4 - iw) 
for all x in the region, whence, by the permanence of functional relations, 

$(PI = $(P 
holds for all p .  But this cannot happen, for w7e have shown earlier in this section that 
$(p )  -+ 0 as I m p  -+ 5 CO. This completes the proof of lemma 11. 

4. Inversion of the Laplace transform 

transform (8) is (Widder 1941, pp. 37 and 63) 
Since S(x,  L) is a continuous function of L, the inversion formula for the Laplace 

c f i M  1 
3 a(x, L)  = - lim 1 dp epLT(p) 

27TlM’” c - i M  

where c is any constant greater than A(z). In  the present section we shall use this formula 
to estimate E(x, L) for large L when z E G. Let the unique pole of Y(p)  with largest real 
part be p ,  ; then there exists a number X such that h # 0 and 

Pi < < PI (22) 
for all the poles pi of T(p) except the simple pole at p,. Moving the contour of integration 
in (21) to the left and applying the calculus of residues at the simple pole p,, we obtain 

where 
1 r d + i M  

We shall show that E ( X ,  L)  -+ 0 as L + CO. Substituting from (14), with p = X+ip, we 
obtain 

The first integral in (25) is equal to 27 if X > 0 and to zero if X < 0;  its absolute 
value therefore cannot exceed 2n. T o  show that the second integral is also bounded in 
absolute value we note that, by (22) and (17), the function x - ’ - $ ( p )  has no zeros on the 
line R e p  = A ;  being analytic and therefore continuous, it is thus bounded away from zero 
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on any closed segment of this line. Moreover, we have already shown (see equation (18)) 
that $ ( A +  ip) -f 0 as p -f & CO;  consequently ~ - ~ - $ ( p )  is bounded away from zero on 
the entire line Re p = A. We can therefore find a number a satisfying 0 < a < I z - ' ~  -$( h + ip)i 
for all real p, and so the absolute value of the second integral in (25) cannot exceed 
J dp  Ixl/(X2+p2)a = nlxl/ha. Both integrals in (25) being bounded, it follows by (22) that 

limE(X, L)  = 0. 
L -3m 

Combining (26) with (23) and using lemma I, we find that 

lim L-l  In1 E(x, L)  j = Re ITmax(x) if x E G 
L -3m 

where IImax(x) is the branch of IT(x) having largest real part; by lemma I this branch is 
unique for all x E G. For real positive values of x, which were shown in $ 3 all to belong 
to G, E(z, L) and pl(x) are also real and positive, so that (27) may be strengthened to 

~ ( x )  = ITmax(x) if x > 0 
where ~ ( x )  is defined in (1). This result shows that the functions denoted by rImax(x) in this 
section and in $ 1 are identical; the result (27) is thus identical with theorem I(a). 

T o  prove theorem I(b) we must show that every point of G has a neighbourhood that 
is free of zeros of E for all sufficiently large L. Let zo be any point of G, and choose h 
so that (22) holds when x = x,; then, since all branches of IT(x) are analytic and therefore 
continuous, it follows by lemma I that (22) also holds throughout some neighbourhood N 
of x,. Moreover, since the pole at p,(x,) is simple, we have $'(pl(xo)) # 0, and hence N 
may be chosen so that $'(p,(x)) # 0 throughout N. These two conditions ensure that N 
is a subset of G. Let C be any compact subset of N. We shall show, using (23), that 
E(x, L)  has no zeros in C when L is large. Since #'(p) and pl(x) are continuous functions, 
the term - l/p12$'(pl) is bounded away from zero for x E C;  therefore it is sufficient to 
show that E(X, L)  --f 0 uniformly on C. By the definition of N there is a positive lower 
bound, say 6, on the values taken by Rep,(z) - X for x E C;  consequently the exponential 
in (25)  is bounded above by the function exp( -LS). The factor multiplying this exponential 
is also Uniformly bounded, this time by a constant: as we have already seen, the first integral 
in brackets cannot exceed 2n and the second cannot exceed rr[ xI /ha', where a' is a positive 
lower bound on lx-l-$(h+ip)l for all x in C and all real p. (That such a lower bound 
exists follows from an argument similar to the one used in proving (26), with z-I-$( h + ip) 
now treated as a function of the three variables Re x, Im x and p which is continuous and 
has no zeros when x E C and p lies in an arbitrary closed interval.) This completes the 
proof that E(Z, L )  + 0 uniformly on C. Using this result in (23), we conclude that C is 
free of zeros of Z(x, L )  for all sufficiently large L. Choosing C to be the closure of some 
neighbourhood of xo, we see by the definition given in $ 1 that x, cannot be a limit point 
of zeros of E. This completes the proof of theorem I. 

5 .  Proof that the limit points lie on arcs 
Having shown that all the limit points of zeros of Z(x, L)  belong to S, the point set in 

the x plane complementary to G, we have still to determine which points of S are limit 
points of E(x, L )  and to obtain the limiting density of the zeros on S. As a first step we 
show that S is the union of a set of analytic arcs. Let zo be any point of S, and let p,, ..., p, 
be the poles of largest real part and P , + ~ ,  pk+2, ... be the remaining poles for the function 
T(p) discussed in $ 3 ,  when the parameter x takes the value x,. It is then possible to choose 
a real number X such that 

p, > h > p ,  i f i < k a n d j > k + l .  (29) 
Let the order of the pole pi be Oi (i = 1, ..., k), then by the definitions of x, and of S 

we have 0, + O,+ .,. +O, 2 2. According to lemma I, if pi is a simple pole (i.e. if Oi = 1) 
then the complete analytic function IT has a branch that is analytic near x, and takes the 
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value pi when x = zo. We denote this branch by IT,,l. If, on the other hand, Oi 2, 
then (by (14) and (20)) IT has an algebraic branch point of order 0,-1 at xo, and at any 
point x sufficiently close to zo it has Oi branches all of which tend to the value pi as x + zo. 
We denote these branches by IIi,l(x), IIi,2(x), ..., IIi,o,(z). 

Since all branches of IT(x) are continuous in the limit x + z o ,  we deduce from (29) 
the existence of a neighbourhood N of xo such that every point z in N has the following two 
properties : 

(i) the functions Ili,,(z) (m = 1, ..., Oi; i = 1, ..., k) are analytic at x if x # xo, and 

(ii) ReIIi,,(z) > h > ReITj(x) (30 )  

(i = 1, ..., k; m = 1, ..., 0 , ; j  = k + l , k + 2 ,  ...). 

The property (ii) shows, by lemma I, that the pole or poles of largest real part for any z 
in N must come from the set of numbers II,%,(x) with i = 1, ..., k and m = 1, ..., Oi. 
By (i), the relevant poles are all simple if x # zo, so that the only points of S in N are 
points for which two or more branches have equal real parts: 

Re[ITi,,(x) -IIir,m,(x)] = 0 (31) 

with 1 < i 6 k, 1 6 i’ 6 k, and m # m’ if i = i’. 
Equation (31) defines a subset of N which we denote by H(i, m; i’, m’). This subset is a 

union of analytic arcs: let us denote the analytic function in square brackets by ~(x); 
we know from lemma I1 that ~ ( z )  cannot be a constant, so its derivative can vanish only at 
a finite number of points of N, and at all other points the arcs may be parametrized by the 
equation x = X-l(it), where t = Im[IIi,,m,-IIt,m] and x-l ,  the inverse of the function x, 
is analytic because dX/dx # 0.  

The part of S that lies within N consists of the point zo and the parts of the point sets 
H(i, m; i’, m‘) for which the additional conditions 

(32) 
Re[ITi,,(z) -ITi.,,,,(z)] 2 0 

Re[IIIi.,,.(z) -n,,.,,..(x)] 2 0 

are satisfied for all i” = 1, 2, ..., K and m.” = 1, 2, ..., Oift. Since all branches of IT are con- 
tinuous, the part of H(i, m; i’, m’) consistent with (32) comprises arcs that are subsets of the 
arcs constituting H(i, m; i’, m’); their end points are intersections of H(i, m; i’, m’) with 
either H(i, m; if’, m”) or H(i’, m’; i”, 4’). Thus the part of S within N is the union of a 
finite number of analytic arcs and isolated points. Since xo is an arbitrary point of S, we 
conclude that the whole of S is the union of a set of analytic arcs and isolated points, the 
isolated points and the end points of the arcs having no finite limit point (since every point 
x has a neighbourhood that contains, if x E S, only a finite number of such isolated points 
and end points or, if z E G, none at all). 

T o  complete the proof of theorem II(a) we must show that there are no isolated points 
in S: this will be possible as soon as we have proved theorem II(B), that G is simply con- 
nected. T o  prove theorem II(b) we show that any smooth Jordan curve I? in G has no 
points of S inside it. The  proof depends on the fact that the continuous real-valued function 

u(x) maxi Re ITi(.) (33) 

is subharmonic (Ahlfors 1966, p. 237, Rad0 1949). This fact is obvious when z E G, 
since IInlax(x) is analytic and therefore its real part is harmonic. When x E S we use the 
expansion of n ,,( <) in fractional powers of < - x (ilhlfors 1966, p. 290) : 

II,,m(<) = ITi(x) + 2 a,,,(< - - X ) ~ ! O $  exp(27iinm/Oi) 
m 

n = 1  
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from which it follows that, for small enough values of p, 

1 k  

in agreement with the definition of a subharmonic function. 
It is a property of subharmonic functions (see Rad0 1949, 4 4.31) that 

where ds is the element of arc length on F and 2u/& is the derivative of U taken in a direction 
normal to F, the positive sense being outwards. The two sides of (34) are equal only if U 
is harmonic inside I?. By the definition of I?, however, IImax is analytic at every point of F ; 
applying the Cauchy-Riemann conditions we therefore have 

since TIm,, is single-valued. Here a / &  means a derivative in the direction of I?. Combining 
(34) and (35) we see that U is indeed harmonic inside F, and therefore I Imax is analytic 
inside F, which implies that every point inside F is a point of G. This completes the proof 
of theorem II(b), that G is simply connected, and the fact that S can have no isolated points 
follows at once, completing the proof of theorem II(a), that S consists of analytic arcs, 

6. The limit points of zeros 
In  this section we show that every point of S is a limit point of zeros of E(z, L).  As in 

the previous section we denote the point in question by zo and suppose, for the moment, 
that Z(zo, L)  # 0. By Jensen's formula (Ahlfors 1966, p. 206) we then have, for any 
positive number p, 

A'(T, zo, L )  dr/r = Ll(p, zo, L)/Z.rr -1nl E(zo, L)1 (36) 1: 
where N(Y,  zo, L)  denotes the number of zeros of E(z, L)  inside the circle Iz-zol = Y, and 

2a 

I (p ,  zo, L )  = L- l  In1 E(zo + p  ele, L)l de. (37) 
0 

By (27) and (33), the integrand in (37) tends to the limit u(zo+p exp(i0)) as L -+ CO, 

provided that z,+p exp(i6) E G. Apart from the highly exceptional case where one of 
the arcs constituting S is also an arc of the circle iz-zoI = p, the set S intersects this circle 
at only a finite number of points, and therefore almost all points of this circle belong to G. 
This will enable us to prove that 

2n 

lim I ( p ,  zo, L )  = 1 u ( z ( 0 ) )  d0 (38) 
0 L +CO 

where z(0) 
Let 6 be any small positive number and let C(6) and C'(6) be the parts of the circle 

/z -zol  = p whose distances from S are, respectively, not less than S and less than S. 
We first show that C(6) contributes equally to both sides of (38). By Lebesgue's theorem 
(Riesz and Nagy 1955, 4 19) it is sufficient to show that L-l lnlE(z(O), L)i is bounded 
above and below, uniformly in L, for z(6) E C(6). By (7) an upper bound is 

zo + p exp(i6). 

~ - l I n i ~ ( z ( 6 ) , L ) I  < /z(O)iefl' 6 (/zol+p)efl'. (39) 
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For a lower bound we use Yang and Lee’s (1952) factorization in the form 

L-1 lnjE(x, L)I = L- l  2 lnll -x/x,(L)j (40) 
i 

where x,(L), x,(L), ... are the zeros of E(x, L). Since all the limit points of zeros are at 
least 6 distant from all points of C(6), the region consisting of all points less than 46 distant 
from C(6) must be free of zeros for all sufficiently large L (for otherwise it would contain a 
limit point of zeros, by the Bolzano-Weierstrass theorem (Ahlfors 1966, p. 63), but the 
definitions imply that all such limit points are at least 6 distant from C). Since 

and the number of zeros of S ( x ,  L)  is at most L(a-l+L-l)  because of the hard cores, we 
see from (40) that 

2 ( a - l + L - l )  In gs+ 1x01 + p  

for all sufficiently large L. It follows, by Lebesgue’s theorem and equations (27) and (33), 
that 

lim S L-l  In1 E(z(O), L)I dO = (43) 
m E c(6) z(e) E cm L +m 

To complete the proof we show that the contribution of C’(6) to the two sides of (38) 
tends to zero with 6. Since C’ is the union of a finite number of arcs of the circle 1 x - xol = p ,  
it is sufficient to consider just one of these arcs: let it comprise the points zo + p exp(i0) 
with 0, < 8 < 02.  Since 6 is small we may assume 02-01 < T.  Applying (39) and (40) 
we have 

11: L-l  In1 E(x(O), L)l dO < (0, -e,)( lxol + p )  ep’ (4-4) 

2 ( a - l + L - l )  mini In11 -x(O)/cl de. (45) 

and 

Writing = zo + o eiz where 5 B 0, we have 

where 4 E 0-7. If u/p < 1 the right-hand side of (46) has the lower bound 

since the distance from the point eim to the real axis is sin 4. If cr/p > 1 we write the right- 
hand side of (46) in the form 

whence it follows that the lower bound (47) still applies. Regarded as a function of T ,  the 
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integral (47) takes its minimum value when T = &(e, + e,), and therefore (45) implies 

As 6 + 0, the angular arc length 8, - 81 -f 0, and the upper and lower bounds in (44) and 
(49) both tend to zero uniformly in L. Summing the contributions of the finite set of arcs 
constituting C’(6), we conclude that 

(50)  s ;(e) E c’m 
lim (lim 1 L - l l n l E l d 8 -  

z(e)  E ~ ’ ( 8 )  8-10 L- ta :  

The analogue of this equation with C replacing C’ is also true, by (43). Adding the two 
equations, and noting that since C(8) + C’(6) is the whole circle the limit 8 + 0 is now 
superfluous, we complete the proof of (38). 

T o  apply (38), let p1 and p2 be any two numbers such that 0 < pl < pz and no arc of 
S is an arc of either of the circles Iz-xoI = p l ,  p2. Giving p the values p1 and p2 in (36), 
subtracting the resulting equations, dividing by L and taking the limit L -+ 00, we obtain 
(using (38)) 

where ~1(8)  = xo+pl.  eie, etc. Since N(r, xo, L )  is a non-decreasing function of Y, we 
deduce from (51), after dividing both sides by p2-p1, that 

2 n ~ ( z o  +p2 eie) -u(zo +p l  eie) 
lim sup de. 

P2 -P1 L -1m 

Taking the limit p2 + p l ,  and writing p in place of p l ,  we obtain 

provided that rImax(z) has no branch point on the circle ~ z - z o l  = p (this condition ensures 
that i3u/i3p is uniformly continuous in the annulus p1 < / x - z o /  < p2). In  a similar way 
we can show that the right-hand side of (52 )  is a lower bound on lim inf N(p2, zo, L)/Lpl 
and hence that the right-hand side of (53) is a lower bound on lim inf N(p, zo, L) /L ;  
consequently we deduce that lim, ,,N(p, xo, L) /L  exists and is given by 

where ds = p dB is the element of arc length on the circular contour of integration 
Ix-zoI = p. By the Cauchy-Riemann condition this result may also be written 

where v EE Im rim,, and 
av a 
- p - l -  {u(zo + p  e’”)) 
as ae 

for zo + peie E G. 
In  order to prove that zo is a limit point of zeros it is sufficient to show that the right-hand 

side of (55) is non-zero for every sufficiently small p. If xo is an interior point of one of the 
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arcs constituting S, we choose p SO small that the only part of S inside the circle of integration 
is the part of this arc near zo. Since the integrand in (55) is an exact differential except 
at the two points of intersection (say A and B) of the contour of integration with this arc, 
we may deform the contour so that it goes from A to B on one side of the arc and back 
again on the other ; this gives 

where An is the discontinuity in 2: across the arc. The  formula (56) is equivalent to one 
first given by Hemmer and Hiis Hauge (1964), who obtained it by an electrostatic analogy. 
From it, theorem III(b) follows a t  once. 

T o  prove theorem III(a), that zo E S is a limit point of zeros, we use lemma 11, which 
implies that the two branches of n ( z )  whose real parts are jointly maximal on the arc 
through zo cannot differ by a constant; consequently a(Av)/Zs is not identically zero near 
zo, and we conclude that the right-hand side of (56) is non-zero for arbitrarily small p 
and hence that zo is a limit point of zeros of E(z, L).  If xo is an end point, or a point of 
intersection, of the arcs constituting S, a similar argument may be used, or we may rely 
on the observation that such an end point, being a limit point of limit points of zeros, must 
itself be a limit point of zeros. This completes the proof of theorem 111. 

7. The hard-rod system 

of hard rods, for which 
As an illustration, we use theorem I11 to determine the limit points of zeros for a system 

y ( ~ )  = + CO 

cp(Y)  = 0 

if Y < a 

if Y > a. (57) 

+(P) = e - v p  (58) 

n ( z )  exp(an(z)) = z .  (59) 

Equation (13) gives here 

so that (20) becomes 

We show first that all the limit points of zeros lie on the real axis. By theorem III(a), the 
set 2 of limit points comprises those values of z for which either (i) n ( z )  has two branches 
of largest real part or (ii) IT(x) has an algebraic branch point of largest real part. In  case (i) 
let the two branches with largest real part at z be rIl and 11,) so that Re IIl(x) = Re I12(z). 
Taking the modulus of both sides of (59), we have 

{Re 11(~)}~+ (Im I T ( z ) ) ~  = Izi2 exp(-2a Re IT(z)} (60) 

which implies (since ITl # II,) that Im 111 = - Im IT, # 0. Thus IT, and IT, are complex 
conjugates, and by substituting both of them into (59) we see that x is its own complex 
conjugate, i.e. z is real. T o  treat case (ii) we differentiate (59) and set dz/dll = 0 ;  this shows 
that the only algebraic branch point is 

n(z )  = - l / a ,  z = -I/ea (61) 
so that z is again real. 

T o  discover which parts of the real axis constitute the set 2,  we consider separately 
the segments - cc < z < - l / eu ,  - l /ea  < z < 0 and 0 < z c W. For the segment 
- CO < z < - l/ea, we note that as the real variable t goes from - a3 to + 03 the function 
t eat decreases from 0 to - l /ea  (reached when t = - l / u )  and then increases to + CO. 
Consequently, when z < - l /eu equation (59) has no real solution II(z) and, since the 
complex solutions occur in conjugate pairs, there must be at least two branches of H(z) 
having largest real part; it follows by theorem I11 that if z < - l /ea  then z belongs to 2. 
The end point of this segment, = -l/eu, also belongs to 2 since a limit point of limit 
points of zeros is itself a limit point of zeros. 
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In  the next case, - l /ea  < z < 0, the equation t eat = x has two real roots, the larger 
of which (say t(z))  lies in the range -1ja < t < 0. We shall show that any complex 
solution of (59), say n(z)  A + & ,  has a smaller real part than t(z) .  Taking the imaginary 
part of (59) we find (since z is real and p # 0) that h = - p  cot ap. Using this in the real 
part of (59) we obtain 

Since -1 < (sinap)/ap < 1, the left-hand side of (62) cannot exceed lie, and so (62) 
implies h < - l / a .  Since - l j a  < t, we see that n ( z )  = t (z)  is the solution of (59) having 
largest real part; since this solution is unique, the segment - 1 /ea < z < 0 does not intersect 
2, by theorem I(b). 

For the remaining segment, 0 < z < CO, we use the result proved in 4 3, that every 
real non-negative value of x belongs to G, which shows that this segment too does not 
intersect 2. We conclude, therefore, that for the hard-rod system 2 comprises all points 
with z < - l /ea  and no others. This confirms the result obtained by Hemmer and Hiis 
Hauge (1964) and by Hemmer et al. (1966) using less rigorous methods. 

8. Discussion 
As indicated in the introduction, our work owes much to that done by Hemmer in 

collaboration with Hiis Hauge and Aasen, and to that of Byckling (1965). Apart from the 
greater rigour of our work, the main new result is to show (theorem I) how the criterion 
of largest realpart serves to single out the branch of the complete analytic function II(z) 
that is relevant to the behaviour of F(z, L) for large L,  and (theorem 111) that the lirnit 
points of zeros are the values of z for which two or more branches have largest real part, or 
there is a branch point of largest real part. The corresponding criterion for a class of lattice 
systems was given by Nilsen and Hemmer (1967). Both criteria are natural generalizations 
of criteria that had been used earlier for real positive 2: Kac (1959), in his study of a system 
of hard rods with exponentially decreasing forces, used the fact (obtainable from (1) and (9)) 
that T = p/kT is equal to the abscissa of convergence of the Laplace transform (8); and 
many problems in lattice statistics are equivalent to finding the eigenvalue of a matrix 
that has largest modulus (so that its logarithm has largest real part), as shown first by 
Kramers and Wannier (1941). van Hove (1950), Edwards and Lenard (1962) and Baxter 
(1964, 1965) have also used this type of criterion. 

Possibly the theorems proved here could be extended to more general classes of systems. 
The most immediate generalization would be to a system of hard rods with forces extending 
to second-nearest neighbours or, better still, to forces of infinite range such as the exponential 
force considered by Kac (1959). Another possible generalization is to consider complex 
values for ,8 = l jkT as well as 2 ;  aspects of the behaviour of E in the complex p plane 
have been considered by Fisher (1965) and by Jones (1966). Some of our theorems generalize 
easily to the ,B plane, but we have not succeeded in generalizing theorem 111. 

I t  was shown by van Hove (1950) that the system studied here has no phase transition. 
Our results confirm this, since phase transitions occur only where 2 intersects the positive 
real axis but, as shown in 4 3, the positive real axis lies entirely within G. The most important 
question raised by our work is whether the ‘principle of largest real part’ embodied in 
theorem I can be extended to systems that do have phase transitions. There is reason to 
believe (Elvey 1968) that theorem I does not hold for a system obeying van der Waals’ 
equation of state, but the general question is still open. 
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